Institute for Technologies and Management of Digital Transformation

Dr.-Ing. Richard Meyes, M.Sc.

Wissenschaftlicher Mitarbeiter

Leiter des Forschungsbereichs "Interpretable Learning Models"

Forschungsinteressen:

  • Artificial Intelligence and Machine Learning for Industrial Appliations
  • Predictive Analysis of Time Series Data in Industrial Sensor Systems
  • Structured Representations in Artificial Neural Networks

Biographie

Dr.-Ing. Richard Meyes ist seit Dezember 2018 wissenschaftlicher Mitarbeiter am Institute for Technologies and Management of Digital Transformation an der Bergischen Universität Wuppertal. Seine Forschungsschwerpunkte liegen in der Entwicklung und Untersuchung von Methoden der künstlichen Intelligenz, mit Fokus auf künstliche neuronale Netze, in verschiedenen Anwendungsfeldern, darunter Automotive und Produktion. 

Publikationen

2022
Hütten, N., Meyes, R., & Meisen, T. (2022). "Vision Transformer in Industrial Visual Inspection" , Applied Sciences , 12 (23), 11981.
Alves Gomes, M., Meyes, R., Meisen, P., & Meisen, T. (2022). "Will This Online Shopping Session Succeed? Predicting Customer's Purchase Intention Using Embeddings" in Proceedings of the 31st ACM International Conference on Information & Knowledge Management , New York, NY, USA : Association for Computing Machinery 2873—2882.

ISBN: 9781450392365

2021
Ekeris, T., Meyes, R., & Meisen, T. (2021). "Discovering Heuristics And Metaheuristics For Job Shop Scheduling From Scratch Via Deep Reinforcement Learning" in Proceedings of the 2nd Conference on Production Systems and Logistics (CPSL~2021) .
Meyes, R., Hütten, N., & Meisen, T. (2021). "Transparent and Interpretable Failure Prediction of Sensor Time Series Data with Convolutional Neural Networks" , Procedia CIRP , 104 , 1446—1451.
2020
Meyes, R., Schneider, M., & Meisen, T. (2020). "How Do You Act? An Empirical Study to Understand Behavior of Deep Reinforcement Learning Agents" .