Institute for Technologies and Management of Digital Transformation

Prof. Dr.-Ing. Tobias Meisen

Professor für Technologien und Management der Digitalen Transformation

Forschungsinteressen:

  • Deep and Machine Learning
  • Deep Reinforcement Learning
  • Explainable and Transparent Artificial Intelligence
  • Knowledge Graphs
  • Semantic Interoperability

Biographie

Tobias Meisen ist seit September 2018 Professor des Institute for Technologies and Management of Digital Transformation (TMDT) an der Bergischen Universität Wuppertal. Außerdem ist er Vorsitzender des Interdisziplinären Zentrums für Data Analytics und Machine Learning (IZMD) und seit Oktober 2018 Gründungsbotschafter der Fakultät für Elektrotechnik, Informationstechnik und Medientechnik. Außerdem ist er Mitgründer der Hotsprings GmbH, die mittlerweile ein Teil der umlaut ist.

In seiner täglichen Arbeit widmet sich Tobias Meisen der Digitalen Transformation, insbesondere dem modernen Informationsmanagement in einer vernetzten, digitalen Welt. Den Schwerpunkt seiner Forschung bilden die Konzeptionierung, Entwicklung und Einführung von autonomen technischen Systemen mit Fokus auf Deep Learning und Machine Learning. In seinem zweiten Forschungsschwerpunkt widmet er sich der Sammlung und Integration digitaler Daten mit besonderem Fokus auf den evolutionären Aufbau und der Verwaltung von Knowledge Graphs.

Tobias Meisen ist studierter Informatiker mit den Vertiefungsgebieten Data Mining sowie Datenexploration und  -management sowie promovierter Ingenieur. Von Oktober 2015 bis August 2018 war Tobias Meisen als Juniorprofessor an der RWTH Aachen University tätig. Unter anderem hat er hier im Rahmen des Exzellenzclusters „Integrative Produktionstechnik für Hochlohnländer“ seine Forschungsergebnisse eingebracht. Im Rahmen der ersten Förderphase der Exzellenzinitiative wurde er im März 2010 mit dem Young Researcher Award ausgezeichnet. Tobias Meisen ist Co-Autor und Autor von mehr als hundert wissenschaftlichen Publikationen und regelmäßig als Reviewer für verschiedene Konferenzen und Journals tätig. In den letzten Jahren begleiteten er und sein Team erfolgreich eine Vielzahl von Forschungs- und Entwicklungsvorhaben mit Partnern aus Forschung und Industrie.

2017
Hoffmann, M., Meisen, T., & Jeschke, S. (2017). "OPC UA Based ERP Agents: Enabling Scalable Communication Solutions in Heterogeneous Automation Environments" , PAAMS 2017: Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The PAAMS Collection , 120—131.
Fehling, C. D. (2017). "Neue Lehr- und Lernformen in der Ausbildung 4.0: Social Augmented Learning in der Druckindustrie" , Berufsbildung in Wissenschaft und Praxis , 2 ,
Tercan, H., Al-Khawli, T., Eppelt, U., Büscher, C., Meisen, T., & Jeschke, S. (2017). "Improving the Laser Cutting Process Design by Machine Learning Techniques" , Production Engineering , 11 (2), 195—203.
Schilberg, D., Hoffmann, M., Schmitz, S., & Meisen, T. (2017). "Interoperability in Smart Automation of Cyber Physical Systems" in Industrial Internet of Things , Jeschke, Sabina and Brecher, Christian and Song, Houbing and Rawat, Danda B., Eds. 261—286.
Kuschicke, F., Thiele, T., Meisen, T., & Jeschke, S. (2017). "A Data-based Method for Industrial Big Data Project Prioritization" , Proceedings of the International Conference on Big Data and Internet of Thing - BDIOT2017 , 6—10.

zuletzt bearbeitet am: 29.10.2024

Weitere Infos über #UniWuppertal: