Prof. Dr.-Ing. Tobias Meisen
Professor für Technologien und Management der Digitalen Transformation
Forschungsinteressen:
- Deep and Machine Learning
- Deep Reinforcement Learning
- Explainable and Transparent Artificial Intelligence
- Knowledge Graphs
- Semantic Interoperability
Biographie
Tobias Meisen ist seit September 2018 Professor des Institute for Technologies and Management of Digital Transformation (TMDT) an der Bergischen Universität Wuppertal. Außerdem ist er Vorsitzender des Interdisziplinären Zentrums für Data Analytics und Machine Learning (IZMD) und seit Oktober 2018 Gründungsbotschafter der Fakultät für Elektrotechnik, Informationstechnik und Medientechnik. Außerdem ist er Mitgründer der Hotsprings GmbH, die mittlerweile ein Teil der umlaut ist.
In seiner täglichen Arbeit widmet sich Tobias Meisen der Digitalen Transformation, insbesondere dem modernen Informationsmanagement in einer vernetzten, digitalen Welt. Den Schwerpunkt seiner Forschung bilden die Konzeptionierung, Entwicklung und Einführung von autonomen technischen Systemen mit Fokus auf Deep Learning und Machine Learning. In seinem zweiten Forschungsschwerpunkt widmet er sich der Sammlung und Integration digitaler Daten mit besonderem Fokus auf den evolutionären Aufbau und der Verwaltung von Knowledge Graphs.
Tobias Meisen ist studierter Informatiker mit den Vertiefungsgebieten Data Mining sowie Datenexploration und -management sowie promovierter Ingenieur. Von Oktober 2015 bis August 2018 war Tobias Meisen als Juniorprofessor an der RWTH Aachen University tätig. Unter anderem hat er hier im Rahmen des Exzellenzclusters „Integrative Produktionstechnik für Hochlohnländer“ seine Forschungsergebnisse eingebracht. Im Rahmen der ersten Förderphase der Exzellenzinitiative wurde er im März 2010 mit dem Young Researcher Award ausgezeichnet. Tobias Meisen ist Co-Autor und Autor von mehr als hundert wissenschaftlichen Publikationen und regelmäßig als Reviewer für verschiedene Konferenzen und Journals tätig. In den letzten Jahren begleiteten er und sein Team erfolgreich eine Vielzahl von Forschungs- und Entwicklungsvorhaben mit Partnern aus Forschung und Industrie.
- 2021
- Steiniger, Y., Groen, J., Stoppe, J., Kraus, D., & Meisen, T. (2021). "A study on modern deep learning detection algorithms for automatic target recognition in sidescan sonar images" , Proceedings of Meetings on Acoustics ,
- Müser, S. (2021). "Die Erfassung des bildungswissenschaftlichen Wissens im Lehramtsstudium: Konstruktion und Validierung des ESBW-Tests sowie die Untersuchung des Praxisschocks im Praxissemester" , {University of Duisburg-Essen} .
- Pomp, A., Paulus, A., Burgdorf, A., & Meisen, T. (2021). "A Semantic Data Marketplace for Easy Data Sharing within a Smart City" in Proceedings of the 30th ACM International Conference on Information & Knowledge Management , Demartini, Gianluca and Zuccon, Guido and Culpepper, J. Shane and Huang, Zi and Tong, Hanghang, Eds. New York, NY, USA : ACM 4774—4778.
ISBN: 9781450384469
- Scheiderer, C., Dorndorf, N., & Meisen, T. (2021). "Effects of Domain Randomization on Simulation-to-Reality Transfer of Reinforcement Learning Policies for Industrial Robots" in Advances in Artificial Intelligence and Applied Cognitive Computing , Arabnia, Hamid R. and Ferens, Ken and de {La Fuente}, David and Kozerenko, Elena B. and {Olivas Varela}, José Angel and Tinetti, Fernando G., Eds. Cham : Springer International Publishing and Imprint Springer , 157—169.
ISBN: 978-3-030-70295-3
- Steiniger, Y., Stoppe, J., Kraus, D., & Meisen, T. (2021). "Erzeugung von synthetischen Seitensichtsonar-Bildern mittels Generative Adversarial Networks" , Hydrographische Nachrichten , 30—34.
zuletzt bearbeitet am: 29.10.2024