Institute for Technologies and Management of Digital Transformation

Industrial Deep Learning

Im Bereich "Industrial Deep Learning" erforschen wir Deep Learning-Technologien für industrielle Anwendungen, um innovative Lösungen in Produktion, Logistik und Umwelt zu realisieren. Dabei verbinden wir Grundlagen-KI-Forschung mit der industriellen Praxis und konzentrieren uns auf drei Schwerpunkte

Visuelle Inspektion

Bildbasierte Methoden zur Automatisierung von Qualitätskontrollen sowie zur präzisen Lokalisierung von Anomalien und Schäden.

Sensorbasierte Situations- und Zustandsbewertung

Verarbeitung und Nutzung transienter und saisonaler Sensordaten für Zustandsüberwachung, Anomalieerkennung und Prognosen.

Intelligente Planung und Prozessgestaltung

Lernende Verfahren zur Lösung komplexer Planungs- und Optimierungsprobleme sowie zur Bewertung und Parametrisierung von Prozessen.

 

Unsere Forschung adressiert ein breites Spektrum an Deep Learning-Technologien, darunter verschiedene Lernparadigmen wie Supervised und Reinforcement Learning, Lernszenarien wie Transfer Learning, Representation Learning und Explainable AI, sowie Modellarchitekturen wie Transformer-Netze, Autoencoder und Generative Adversarial Networks.

Wir arbeiten eng mit Industriepartnern zusammen, sei es im Rahmen von öffentlich geförderten Projekten oder direkten F&E-Aufträgen. Dabei setzen wir uns intensiv mit realen Herausforderungen auseinander und beziehen stets die Bedürfnisse von Endnutzern und Fachexperten mit ein. Dieser Praxisbezug stellt sicher, dass unsere Forschungsergebnisse nicht nur theoretisch fundiert, sondern auch unmittelbar in der industriellen Praxis anwendbar sind und die Wertschöpfung verbessern.

Ausgewählte Publikationen

2023
Steiniger, Y., Stoppe, J., Kraus, D., & Meisen, T. (2023). "Verbesserung der Klassifikationsperformance von Deep Learning Modellen durch Reduktion der Komplexität von Seitensichtsonarbildern" in DAGA 2023 - 49. Jahrestagung für Akustik . 892--895.
Bulow, F., Hahn, Y., Meyes, R., & Meisen, T. (2023). "Transparent and Interpretable State of Health Forecasting of Lithium-Ion Batteries with Deep Learning and Saliency Maps" , International Journal of Energy Research , 2023 , 1--23.
Hahn, Y., Langer, T., Meyes, R., & Meisen, T. (2023). "Time Series Dataset Survey for Forecasting with Deep Learning" , Forecasting , 5 (1), 315—335.
Alves-Gomes, M., Wönkhaus, M., Meisen, P., & Meisen, T. (2023). "TEE: Real-Time Purchase Prediction Using Time Extended Embeddings for Representing Customer Behavior" , Journal of Theoretical and Applied Electronic Commerce Research , 18 (3), 1404--1418.
Bulow, F., Wassermann, M., & Meisen, T. (2023). "State of health forecasting of Lithium-ion batteries operated in a battery electric vehicle fleet" , Journal of Energy Storage , 72 , 108271.

Weitere Infos über #UniWuppertal: