Dr.-Ing. Richard Meyes, M.Sc.
Wissenschaftlicher Mitarbeiter
Leiter des Forschungsbereichs "Interpretable Learning Models"
Forschungsinteressen:
- Artificial Intelligence and Machine Learning for Industrial Appliations
- Predictive Analysis of Time Series Data in Industrial Sensor Systems
- Structured Representations in Artificial Neural Networks
Biographie
Dr.-Ing. Richard Meyes ist seit Dezember 2018 wissenschaftlicher Mitarbeiter am Institute for Technologies and Management of Digital Transformation an der Bergischen Universität Wuppertal. Seine Forschungsschwerpunkte liegen in der Entwicklung und Untersuchung von Methoden der künstlichen Intelligenz, mit Fokus auf künstliche neuronale Netze, in verschiedenen Anwendungsfeldern, darunter Automotive und Produktion.
Publikationen
- 2019
- Meyes, R., Donauer, J., Schmeing, A., & Meisen, T. (2019). "A Recurrent Neural Network Architecture for Failure Prediction in Deep Drawing Sensory Time Series Data" , Procedia Manufacturing , 34 , 789—797.
- Meyes, R., Lu, M., Waubert-de-Puiseau, C., & Meisen, T. (2019). "Ablation Studies in Artificial Neural Networks" , arXiv arXiv:1901.08644 .
- Meyes, R., Lu, M., Waubert-de-Puiseau, C., & Meisen, T. (2019). "Ablation Studies to Uncover Structure of Learned Representations in Artificial Neural Networks" , Proceedings of the 2019 International Conference on Artificial Intelligence (ICAI) .
- Meyes, R., Tercan, H., & Meisen, T. (2019). "Artificial Intelligence in Automotive Production" , Mobility in a Globalised World 2018 , 22 , 308—324.
- Baer, S., Bakakeu, J., Meyes, R., & Meisen, T. (2019). "Multi-Agent Reinforcement Learning for Job Shop Scheduling in Flexible Manufacturing Systems" in 2019 Second IEEE International Conference on Artificial Intelligence for Industries , Los Alamitos, CA : IEEE-Computer-Society 22—25.
ISBN: 978-1-7281-4087-2