Industrial Deep Learning
Im Bereich "Industrial Deep Learning" erforschen wir Deep Learning-Technologien für industrielle Anwendungen, um innovative Lösungen in Produktion, Logistik und Umwelt zu realisieren. Dabei verbinden wir Grundlagen-KI-Forschung mit der industriellen Praxis und konzentrieren uns auf drei Schwerpunkte
Visuelle Inspektion: Bildbasierte Methoden zur Automatisierung von Qualitätskontrollen sowie zur präzisen Lokalisierung von Anomalien und Schäden.
Sensorbasierte Situations- und Zustandsbewertung: Verarbeitung und Nutzung transienter und saisonaler Sensordaten für Zustandsüberwachung, Anomalieerkennung und Prognosen.
Intelligente Planung und Prozessgestaltung: Lernende Verfahren zur Lösung komplexer Planungs- und Optimierungsprobleme sowie zur Bewertung und Parametrisierung von Prozessen.
Unsere Forschung adressiert ein breites Spektrum an Deep Learning-Technologien, darunter verschiedene Lernparadigmen wie Supervised und Reinforcement Learning, Lernszenarien wie Transfer Learning, Representation Learning und Explainable AI, sowie Modellarchitekturen wie Transformer-Netze, Autoencoder und Generative Adversarial Networks.
Wir arbeiten eng mit Industriepartnern zusammen, sei es im Rahmen von öffentlich geförderten Projekten oder direkten F&E-Aufträgen. Dabei setzen wir uns intensiv mit realen Herausforderungen auseinander und beziehen stets die Bedürfnisse von Endnutzern und Fachexperten mit ein. Dieser Praxisbezug stellt sicher, dass unsere Forschungsergebnisse nicht nur theoretisch fundiert, sondern auch unmittelbar in der industriellen Praxis anwendbar sind und die Wertschöpfung verbessern.
Ausgewählte Publikationen
- 2023
- Waubert-de-Puiseau, C., Tercan, H., & Meisen, T. (2023). "Curriculum Learning in Job Shop Scheduling using Reinforcement Learning" .
- 2022
- Waubert-de-Puiseau, C., Meyes, R., & Meisen, T. (2022). "On reliability of reinforcement learning based production scheduling systems: a comparative survey" , Journal of Intelligent Manufacturing , 33 (4), 911—927.
- Alves-Gomes, M., Meyes, R., Meisen, P., & Meisen, T. (2022). "Will This Online Shopping Session Succeed? Predicting Customer’s Purchase Intention Using Embeddings" in Proceedings of the 31st ACM International Conference on Information & Knowledge Management , New York, NY, USA : Association for Computing Machinery 2873—2882.
ISBN: 9781450392365
- Alves-Gomes, M., Meyes, R., Meisen, P., & Meisen, T. (2022). "Will This Online Shopping Session Succeed? Predicting Customer's Purchase Intention Using Embeddings" in Proceedings of the 31st ACM International Conference on Information & Knowledge Management , New York, NY, USA : {Association for Computing Machinery} 2873--2882.
ISBN: 9781450392365
- Hütten, N., Meyes, R., & Meisen, T. (2022). "Vision Transformer in Industrial Visual Inspection" , Applied Sciences , 12 (23), 11981.